AI for Cyber Security Spam email detection

Spam Email detection

Dataset: https://www.kaggle.com/datasets/venky73/spam-mails-dataset/data

Machine learning provides a powerful way to combat spam emails. Here's the basic process:

- Data Preparation: Collect a labeled dataset of emails (spam and non-spam). Text data is cleaned and transformed into numerical features (e.g., word counts, presence of certain phrases).
- Model Selection: Choose a machine learning algorithm like Naive Bayes, Support Vector Machines (SVMs), or Random Forests.
- **Training:** Train the model on the prepared dataset, allowing it to learn patterns that distinguish spam from legitimate emails. Prediction: The trained model can now classify new, unseen emails as spam or not spam.

It discusses Enron emails and the data was collected from Enron1 folder.

Link: https://www2.aueb.gr/users/ion/data/enron-spam/

The dataset contains two folders of emails, spam and ham, each containing 517 emails.

The emails are labelled as

- spam
- ham

Importing Required Liberaries

import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore")

Data Importing

df = pd.read_csv('spam_ham_dataset.csv')
df.head()

→ ▼		Unnamed: 0	label	text	label_num
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0
	1 2349 ha		ham	Subject: hpl nom for january 9 , 2001\r\n(see	0
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
	3	4685	spam	Subject: photoshop , windows , office . cheap \ldots	1
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0

```
print(df['text'][0])
print(f"\nLabel: { df['label'][0] }")
```

```
Subject: enron methanol ; meter # : 988291
this is a follow up to the note i gave you on monday , 4 / 3 / 00 { preliminary
flow data provided by daren } .
please override pop ' s daily volume { presently zero } to reflect daily
activity you can obtain from gas control .
this change is needed asap for economics purposes .
```

Label: ham

print(df['text'][3])
print(f"\nLabel: { df['label'][3] }")

```
\overbrace{} Subject: photoshop , windows , office . cheap . main trending abasements darer prudently fortuitous undergone
```

lighthearted charm orinoco taster railroad affluent pornographic cuvier irvin parkhouse blameworthy chlorophyll robed diagrammatic fogarty clears bayda inconveniencing managing represented smartness hashish academies shareholders unload badness danielson pure caffein spaniard chargeable levin

Label: spam

✓ Data Preprocessing

df = df.rename(columns={df.columns[0]: 'word_count'})

df.head()

$\overline{\rightarrow}$		word_count	label	text	label_num
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0
	1 2349		ham	Subject: hpl nom for january 9 , 2001\r\n(see	0
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
	3	4685	spam	Subject: photoshop , windows , office . cheap \ldots	1
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0

df.sample(3)

$\overline{2}$	word_count		label	text	label_num
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
	4135 1995 ham Subject:		ham	Subject: re : occidental battleground meter 98	0
	4422	2977	ham	Subject: re : april 2001 spot purchases\r\nvan	0

analyzing the word count of ham messages

df[df['label_num']==0].describe()['word_count']

_		2672 000000
\rightarrow	count	3672.000000
	mean	1835.500000
	std	1060.159422
	min	0.00000
	25%	917.750000
	50%	1835.500000
	75%	2753.250000
	max	3671.000000
	Name:	word_count, dtype: float64

analyzing word count of spam messages

df[df['label_num']==1].describe()['word_count']

$\overline{\Sigma}$	count	1499.00000	
	mean	4421.00000	
	std	432.86834	
	min	3672.00000	
	25%	4046.50000	
	50%	4421.00000	
	75%	4795.50000	
	max	5170.00000	
	Name:	word_count, dtyp	e: float64

✓ ML Application

from sklearn.feature_extraction.text import TfidfVectorizer

tfid = TfidfVectorizer(max_features=3000)

X = tfid.fit_transform(df['text'])

✓ Data Splitting

X.shape

→ (5171, 3000)

y = df['label_num']

y.shape

→ (5171,)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=47)

X_train.shape, X_test.shape, y_train.shape ,y_test.shape

✓ Model Creation

from sklearn.linear_model import LogisticRegression

```
lr = LogisticRegression(C=1,solver='liblinear',penalty='l2', max_iter=50)
lr.fit(X_train,y_train)
```

```
LogisticRegression
LogisticRegression(C=1, max_iter=50, solver='liblinear')
```

✓ Model evaluation

y_pred = lr.predict(X_test)

from sklearn.metrics import r2_score, accuracy_score

print(r2_score(y_test,y_pred))
print(accuracy_score(y_test,y_pred))

→ 0.940982484817958 0.9884057971014493